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Introduction of the Institute’s business sector : 
 

Education sector plays a vital role in country’s growth as it results in skilled manpower,                             

enhanced industrial productivity. By 2020, India is expected to be the host of youngest                           

workforce in the world. In order to cater the world needs, education sector must enrich                             

students’ skill set. Apart from the syllabus, students are expected to be proactive in other                             

activities. According to HRD ministry, there are around 6000 colleges and 2.9 million                         

students get enrolled in engineering colleges every year in India . 1

 

Recently the practice of outsourcing industrial research projects to universities has gained                       

momentum. This way, research labs in Indian colleges are able to get funding for carrying                             

out research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 "Only 7 per cent engineering graduates employable ... - India Today." 13 Jul. 2016, 
https://www.indiatoday.in/education-today/featurephilia/story/engineering-employment-problems-329022-2016-07-
13​. Accessed 12 Feb. 2019. 

 
 



 

 
 
 
 
 

Overview of the Institution : 
 

International Institute of Information Technology, Hyderabad (IIITH) is an                 

autonomous university, founded as a not-for-profit public private partnership (N-PPP) in                     

1998, and is the first IIIT in India under this model. Over the years, the institute has                                 

evolved strong research programmes in various areas, with an emphasis on technology                       

and applied research for industry and society. The institute facilitates interdisciplinary                     

research and a seamless flow of knowledge. Several world-renowned centres of excellence                       

are part of IIITH’s research portfolio. It has established various joint collaboration and                         

co-innovation models with an industry outreach spanning significant national and                   

multinational companies. Its innovative curriculum allows students the flexibility of                   

selecting their courses and projects. Apart from academics the institute provides students                       

with a comprehensive environment that promotes art and culture, sports, societal                     

contributions and self-governance. Even undergraduate students get to participate in                   

ongoing research and technology development - an opportunity unprecedented in India. As                       

a result, a vibrant undergraduate programme co-exists along with a strong postgraduate                       

programme. 

 

Kohli Center on Intelligent Systems (KCIS) was established at ​International Institute of                       

Information Technology, Hyderabad (IIIT Hyderabad) in 2015 with funding from ​Tata                     

Consultancy Services (TCS) Foundation ​to give a fillip to research, teaching and                       

entrepreneurship in the broad Intelligent Systems area. Since then, in a short span of 3                             

years it has evolved to become India's leading center on intelligent systems. Its                         

groundbreaking research in the areas of language technology, computer vision, data                     

sciences, robotics, cognitive sciences and machine learning has been recognized and                     

commended by researchers in the world over. KCIS has brought together the sharpest                         

 
 



 

minds to create India's largest Artificial Intelligence team, and is successfully taking                       

research from lab to land and engaging with society through its educational outreach.  

 

The center is being led and steered by an advisory board consisting of Turing Award                             

winner Dr. Raj Reddy, an early Pioneer in Artificial Intelligence and University Professor                         

at Carnegie Mellon University (CMU); Dr F.C. Kohli, also known as the Father of Indian                             

Software Industry; Dr. Manuela M. Veloso, Herbert A. Simon University Professor,                     

School of Computer Science, Carnegie Mellon University, USA; and Dr. Mark S. Fox,                         

Director, Center for Social Services Engineering Department of Mechanical and Industrial                     

Engineering, University of Torontom Canada.  

 

Last year, KCIS's research was featured in 600 publications and received 5792 citations.                         

Prof P.J. Narayanan, Director, IIIT-H was elected Fellow of INAE and Amazon Chair                         

Prof. C.V. Jawahar was elected as Fellow of IAPR. 

 

It currently hosts 1800 students and 80 faculty members. Programmes offered are                       

B.Tech, M.Tech, Ph.D, MS by research, M.Phil in Computational Linguistics, Dual                     

Degree programme, PG. 

 

Research centers in KCIS are, 

Center for Visual Information and Technology (CVIT) : CVIT focuses on basic and                         

advanced research in image processing, computer vision, computer graphics and machine                     

learning. This center deals with the generation, processing, and understanding of                     

primarily visual data as well as with the techniques and tools required doing so efficiently. 

 

Cognitive Science (CogSci) :​ Focuses on Cognitive Science 

 

Data Science and Analytics Center (DSAC) : Conducts research, facilitates technology                     

transfer, and builds systems in the broad area of data engineering. 

 

 
 



 

Language Technologies Research Center (LTRC) : LTRC addresses the complex                   

problem of understanding and processing natural languages in both speech and text mode.                         

LTRC conducts research on both basic and applied aspects of language technology. It is                           

the largest academic centre of speech and language technology in South Asia. LTRC                         

carries out its work through four labs, which work in synergy with each other, as listed                               

above. 

Robotics Research Center : The centre's research focuses in the areas of Mobile and                           

Aerial Robotics, Robotic Vision, Mechanism Design and Multi Robotic Systems. 

Machine Learning Lab : They carry out research and develop different theoretical                       

foundations for machine learning ​study the role of deep learning in planning,                       

reinforcement learning and game theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

Plan of internship program: 

 
LTRC lab: In the MT-NLP Lab at LTRC, IIIT-H, work is undertaken in many different                             

sub-areas of NLP including syntax and parsing, semantics and word sense                     

disambiguation, discourse and tree banking, machine translation, etc. Computational                 

models are built inspired from linguistics, which are combined with machine learning                       

techniques.The Lab and the Centre as a whole, has done original work on developing                           

Computational Paninian Grammar (CPG) framework for Indian languages. Using such a                     

framework, treebank for Indian languages have been developed. These provide a rich                       

testbed for studying and understanding language in actual use, and are also used for                           

developing parsers using machine learning. This has given rise to full sentence parsers                         

with broad coverage for Indian languages. Machine translation (MT) has been a driving                         

application on which intense research is being done.  

 

Internship Duration :​ Dec 19th 2018 to May 13th 2019. 

Weeks   Plan 

Week 1-2   Knowing existing tools and learning basics 

Week 3-4   Literature Survey 

Week 5-6   Data pre-processing and environment 
setup 

Week 7-8   Baselines 

Week 9-10  Brainstorm and defend idea 

Week 11-12  Implementing proposed ideas 

Week 13-14  Analyzing outcomes 

Week 15-16  Refining thoughts 

Week 17-18  Revised implementation & discussion 
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Abstract

Machine Translation has achieved Human-level performance for high-resource language pairs

like En-Fr by leveraging large amounts of parallel data. For low-resource language pairs, where

parallel data is minimal, Unsupervised Machine Translation learning seems to be the only stip-

ulation, considering the data-hungry Neural Networks. Recent work in Unsupervised Machine

Translation obviated the need for Parallel data by just leveraging large amounts of monolingual

corpora on either sides. This work investigates various methods to ameliorate Unsupervised

Neural Machine Translation. First, we propose to leverage the models trained during Unsu-

pervised NMT as pre-trained models for fine-tuning them with limited parallel data available,

making them off-shelf tools. Second, we investigate how the inclusion of polysemy information

and language specific information like chunks affect the performance of Unsupervised NMT.

We also propose a modified Back-Translation approach, which significantly reduces the training

time by making the model to converge fast and achieve comparable jump in the translation

performance.
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Chapter 1

Introduction

Machine Translation is the task of building a model that could potentially translate a sentence

in source language to target language, preserving both faithfulness and fluency of the content.

Machine Translation requires humongous parallel data, for fitting millions of parameters, in case

of Neural MT and building Phrase tables in case of Phrase Based Statistical MT. Statistical

MT does lexical substitution followed by running a language model on the target side. Same

has been adopted to NMT by pre-training language models on either sides of language pairs.

NMT achieved encouraging results albeit with parallel data, which is not true for majority of

language pairs. This motivates the need for Unsupervised Machine Translation.

Abstracting the literature work, major contribution to Unsupervised MT was done by Artetxe

et al. (2017b), Lample et al. (2017) & Lample et al. (2018). They proposed that UnsupervisedMT

can be achieved in 3 steps : (1) Initialization (2) Language Modelling (3) Back Translation.

Initialization : Initialization for Unsupervised MT could be a naive lexical substitution, which

is achieved through Cross-lingual embeddings in this setting. Cross-lingual embeddings preserve

semantic information albeit there can be problems with polysemy.

Language Modelling : An ideal Language Model tells how a sentence should be read. Poorly

constructed target sentence from lexical substitution can be re-constructed by Language Models.

For this reason, Denoising Auto-Encoder(2.3) is used.

Back Translation : Here, synthetic parallel data for Source→Target NMT model is created

1



Chapter 1. Introduction 2

by appending Target sentence on the target side & synthetically generated source sentence from

passing Target sentence through Target→Source NMT model on source side & vice versa.

Although the previous work claims that their Unsupervised Machine Translation methods work

for any pair of languages, intense empirical results couldn’t be provided, which is in a way

acceptable considering the large number of languages available worldwide. Our work is an ex-

tension to Lample et al. (2018), where we investigate various methods to alleviate Unsupervised

Machine Translation.

In this work, we fine-tune NMT models, which are conditioned under several constraints of

Unsupervised NMT framework, on the little parallel data available and see if the knowledge

learned in Unsupervised setting can be transferred to supervised setting and to know what

could be the minimum amount of supervision (parallel data) required for the models to improve

their performance.

Training time is a bigger obstacle in an unsupervised setting and our Modified Back Transla-

tion approach significantly reduces the training time and lets the models converge in less time,

with a comparable performance. It involves synthetic dictionary based sentence generations in

Back-Translation instead of NMT models based generations.

Since Back-Translation involves leveraging NMT models for synthetic parallel data, we inves-

tigated if externally trained sentence representations(2.2) help in the initial stages. We also

investigate if chunking alleviates the whole unsupervised setting.

We evaluate our approaches on Hi-Ur and En-Hi Language pairs.



Chapter 2

Literature Survey

2.1 Word Alignments

Word embeddings are the distributed representation of words in a low-dimensional continuous

space. Traditional Word vectors like Word2Vec(Mikolov et al., 2013a), fastText(Bojanowski

et al., 2017) and GloVe(Pennington et al., 2014) capture semantics of a language based on

the context & co occurrence. Exploiting the embeddings of a language helped in discovering

semantic similarities and dissimilarities. For example, it is shown by Mikolov et al. (2013a) that

~King + ~Woman − ~Man = ~Queen (2.1)

Despite the syntactical differences across languages, we all share the same physical world.

Mikolov et al. (2013b) aligned embeddings of two languages with a linear mapping, exploit-

ing the fact that the languages share same structures in embedding spaces. They used top 5000

words in the source language and their translations as the anchor points for learning a rotation

matrix W which minimizes,

|WX − Y | (2.2)

3
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Figure 2.1: Illustration of Conneau et al. (2017) work. (A) Embeddings of each language,
English (red) X and Italian (blue) Y are learned individually. Each dot represents a word and
its size is proportional to the frequency in corpus. (B) Words are sampled (Green) from each
language and mapped using Adversarial training, which will make sure that the distributions are
alike. (C) Rough alignment from B is fine-tuned with frequent words as anchor points. Refined
transformation matrix is then applied to other words. (D) Eventually, words are translated by

CSLS metric is used to shift the rows.

where X & Y are the word embeddings of source and target languages. Following the same line

of work, Artetxe et al. (2017a) proposed using a seed lexicon of just 25 word-pairs for iteratively

generating transformation matrix and inducing seed dictionary.

Conneau et al. (2017) learned bilingual dictionary in a completely unsupervised setting in two

steps. First, a linear transformation is learned between source & target language spaces by

Adversarial Training(Goodfellow et al., 2014). Synthetic dictionary generated from cross-lingual

embeddings in first step is fine-tuned with Procrustes alignment using frequent words as the

anchor points.

Let X = {x1,x2,x3,...,xn} , Y = {y1,y2,y3,...,ym} represent word embeddings of source and

target languages. Let d be the embedding dimension. Having two matrices X, Y of size (m x

d) & (n x d), a transformation matrix W is to be learned to minimize (2.2).

Adversarial Training consists of two modules, Discriminator and Mapper. Objective of Dis-

criminator is to maximize the probability of detecting whether a given vector is from mapped

distribution WX or true distribution Y. Objective of Mapper is to fool the discriminator by

adjusting transformation matrix W.

In terms of implementation, both Discriminator and Mapper are actually one model except that

the parameters θD are trained during Discriminator training phase, keeping W constant and

vice-versa for training Mapper.
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W from Adversarial Training is used to build a synthetic dictionary leveraging Cross-Domain

Similarity Local Scaling (CSLS) metric for refinement using Procrustes alignment. CSLS metric

tries to ensure that nearest neighbor of a source word, in target language must have the source

word as its neighbor.

2.2 Context Dependent Representations

Traditional word embeddings have one-one mapping, which misses out polysemy. McCann

et al. (2017) proposed dynamic representations for words as an alternative to word embeddings.

Basically, they train a Bi-Directional LSTM with Language modelling as the target task. Output

of LSTM encoder is considered to hold contextual information, and hence the name Context

Vectors. They proved that concatenating this information with word embeddings resulted in

efficient models. Hashimoto et al. (2016) showed that the bottom layer in a 2-layer LSTM

encodes information, that is useful for syntactic tasks like POS Tagging and higher layer captures

word sense. In the same line of work, Peters et al. (2018), considered word representations as

a function of internal states of Bi-Directional LSTM with a coupled Language Model. Here,

unlike word embeddings, word is a function of entire input sentence, as we consider all words

before the current word for forward Language Model and words after it for backward Language

Model. They proposed that a linear combination of internal states can be learned for each end

task. These representations for each word can be included either at the input level along with

traditional word embeddings or at output or both.

2.3 Unsupervised Machine Translation

NMT(Bahdanau et al., 2014; Sutskever et al., 2014) is an end-end system, skipping the sparsity

of one-hot vectors & exploiting parallel corpus and continuous distribution feature of word em-

beddings. As humans, we don’t tend to do an end-end translation, especially when the language

pair is new is to us. We start by lexical substitution, followed by checking the fluency/order of

the sentence.
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Denoising Auto-Encoder : Vincent et al. (2008) proposed building a model which can

reconstruct a signal given its corrupted form. Lample et al. (2017) introduced noise in the form

of randomly dropping, swapping the words in a sentence.

Llm = Ls(PS→S(x|C(x))) + Lt(Pt→t(y|C(y))) (2.3)

where x, y are source, target sentences & C(x), C(y) are corrupted models, which drop, swap

words. Ls, Lt are the losses of language models.

Back-Translation : In Statistical Machine Translation, training a language model on target

side for fluency has been a common practice(Koehn et al., 2007), which is later adopted to NMT

by pre-training encoders and decoders with respective language models (Glehre et al., 2015).

Sennrich et al. (2015) proposed to leverage monolingual data for generating synthetic parallel

data. Initially, Source-Target & Target-Source NMT models are trained with the existing

parallel data and then monolingual target sentences are added to parallel corpus, with source

sentences being generated as output of pre-trained reverse NMT model, Target-Source. This

is repeated for source sentences as well.

Xia et al. (2016) contributed mainly to Unsupervised MT by coining the term Dual-NMT, where

Source-Target & Target-Source NMT models learn from the feedback signals of each other.

(Artetxe et al., 2017b; Lample et al., 2017) proposed Unsupervised Machine Translation as a

problem, which can be solved in three main steps. 1. Lexical substitution(2.1), 2. Denoising the

lexically generated sentence and 3. Iterative Back Translation. They share a common principle

that, Decoder’s input in NMT should be ideally induced from encoder’s distribution, regardless

of input language i.e decoder should be able to reconstruct the sentence in target language from

the context vector without any information of the source language. Main difference between

their work is implementation of step 1 & latent space constraint mentioned in the previous

point. For the latent space constraint, Lample et al. (2017) use single encoder & decoder for

the language pairs and Artetxe et al. (2017b) use a shared encoder and individual decoders for

language pairs, which is shown in Figure 2.2.
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Lample et al. (2018) simplified the architectures proposed by Artetxe et al. (2017b); Lample et al.

(2017) by sharing the encoder, decoder parameters of dual NMT. They abstracted the concepts

and applied the same to Phrase Based Statistical MT. Simultaneously, Yang et al. (2018) also

proposed sharing encoder, decoder weights along with introducing two GANs namely the local

GAN and global GAN in the UnsupervisedMT framework for effective cross-lingual translation.

Our work is an extension to Lample et al. (2018), considering the simplicity and benchmarks

achieved.

Figure 2.2: Illustration of Artetxe et al. (2017b) architecture



Chapter 3

Methodology

In our analysis of previous methods, we observed that it is a good practice to leverage Byte-Pair

encoding1 for converging the large vocabulary size, considering large monolingual corpora and

agglutinative nature of few languages (Dravidian languages like Telugu, Kannada) etc.

3.1 Architecure

NMT is a sequence transduction task, translating sequence of symbols in source domain to

sequence of symbols in target domain. On a higher level, NMT consists of encoder and de-

coder. Encoder maps sequence of symbols in source domain to a continuous distribution and

decoder maps this distribution to sequence of symbols in target domain. Recurrent Neural

Networks(RNNs) (Jain and Medsker, 1999) are primarily used for sequence transduction tasks,

but the problem with RNNs is that, a sentence is processed sequentially i.e word-by-word. This

phenomenon is quite slow considering the backpropagation through all hidden steps. Vaswani

et al. (2017) proposed Transformer architecture to completely drop the idea of RNNs and speed

up the training procedure. Similar to any other sequence-to-sequence architecture, Transformer

also has encoder and decoder. Encoder and decoder have 6 identical layers.

1https://en.wikipedia.org/wiki/Byte pair encoding
2http://jalammar.github.io/images/t/The transformer encoder decoder stack.png

8
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je suis étudiant

ENCODER DECODER

I am studentOUTPUT :

INPUT :

Figure 3.1: Seq2Seq architecture

Figure 3.2: Transformer’s Encoder-Decoder stack 2

3.1.1 Encoder

Encoder has 6 identical layers stacked on top of each other. Each layer consists of Self Attention

Network followed by a feed forward Neural Network. Sub-layers in each layer are connected
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through residual connections(He et al., 2015).

Self-attention: Self-attention is Transformer’s way of encoding each element of a sequence. It

encodes each word in terms of other words. This can be explained with the following figure 3.3.

Figure 3.3: Self Attention examples 3

Here, the word it can be understood by considering words like animal , street & crossing and

this phenomenon can be achieved through Self-Attention. The idea of self-attention is to score

words in terms of relatedness. Self-Attention projects embedding of each word into 3 vectors

namely Key(K), Value(V) and Query(Q) (Figure 3.4).

Query, as the name suggests is used to query it’s closeness/relatedness with other words. Key,

Value are in-house elements of a word, which are tested against Query of other words. Query

vector of the current word is projected on Key vectors of each word, which gives a similarity

score, which is then, divided by
√
d, where d is the dimension of embedding. Division by

√
d is

required because whenever dot product is done between two vectors in high-dimensional space,

output will be large which pushes the softmax to smaller values, resulting in vanishing gradients.

Resulting scores are passed through a softmax function. Softmax scores denote the importance

of each word in defining the current word. Softmax scores of K.QT are multiplied by V vectors.

3https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
4http://jalammar.github.io/images/t/transformer self attention vectors.png
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Figure 3.4: Self Attention 4

Next step is to take weighted sum of values(V) of the words. The weighted sum (zk) is the output

of Self-Attention at current position k. Every other element in a sequence will be encoded this

way. Entire mechanism can be seen in Figure 3.5.

Whole self-attention mechanism is parallelized by multiple smaller self-attentions. Embedding

is split into smaller representations and individual self-attention mechanism is applied to each

representation. Outputs of each self-attention mechanism at each position are concatenated and

passed through a feed-forward neural network for getting one representation Zk for each position.

An overview of encoder layer can be seen in Figure 3.6. Note that the same feed-forward neural

network is applied to all positions(same parameters) .

5http://jalammar.github.io/images/t/self-attention-output.png
6http://jalammar.github.io/images/t/encoder with tensors 2.png
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Figure 3.5: Self Attention Output 5

3.1.2 Decoder

A Decoder layer has another additional sub-layer Encoder-Decoder Attention, compared to en-

coder, making it 3 sub-layers in it. In Encoder-Decoder Attention, same mechanism of Self-

Attention is applied except that Keys, Values are considered from the outputs of final encoder

layer and Queries from the current outputs generated(Figure 3.7).

7http://jalammar.github.io/images/t/Transformer decoder.png
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Figure 3.6: Encoder layer layout 6

Figure 3.7: Encoder - Decoder layer layout 7

3.1.3 Positional information

Since there is a need for including the word order and RNN is absent in Transformer Architec-

ture, Positional Embeddings are summed with word embeddings. Although there are many ways

to include Position information, positional embeddings provide a continuous distribution and

distance between the words can be inferred intuitively from distance between embeddings. In

Figure 3.8, rows indicate the embeddings of words and each column corresponds to dimension.
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Each row is a sinusoidal wave, consisting of sine and cosine (after certain dimension). Values

are scaled from -1 to +1. Further information can be found in Vaswani et al. (2017).

Figure 3.8: Position Embeddings Visualization 8

Overall architecture of Transformer can be seen in Figure 3.9.

3.2 Unsupervised NMT

Unsupervised NMT can be seen as encoder-decoder pairs of each language making it an ensemble

of four blocks (Figure 3.10). Language modelling & Machine Translation share encoder, decoder

pairs i.e both the tasks are simultaneously trained on the same blocks. Hindi-Urdu Language

pair is chosen as our primary interest area. In our experiments, we restrict the encoder, decoder

8http://jalammar.github.io/images/t/transformer positional encoding large example.png
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Figure 3.9: Transformer architecture (Vaswani et al., 2017)

Figure 3.10: Unsupervised NMT architecture

layers to 4 and top 3 encoders, bottom 3 decoders of language pairs have shared weights to

satisfy the latent space constraint(2.3).
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3.2.1 Corpus Details

For Hi-Ur, CFILT Hindi corpus9 and Urdu corpus from Jawaid et al. (2014) are used as mono-

lingual corpora for experiments and ILMT Hi-Ur parallel corpus10 is used for evaluation. For

En-Hi, wiki english data dumps11 are used.

Corpus # Sentences

English 20 M
Hindi 20 M
Urdu 5.5 M
Hi-Ur Parallel corpus 47000
Hi-En Parallel corpus 50000

Table 3.1: Corpus details

3.2.2 Baselines & Metrics

Transformer based Neural MT system is considered as Baseline and BLEU metric is considered.

3.2.3 Experiments

Individual Transformer based NMT architectures are trained for language pairs to see how well

they perform without any cross-lingual embeddings, back-translation. This serves as one of our

baselines and scores are reported in Table 4.3.

In case of Unsupervised NMT, initially, Byte Pair Encoding (BPE) codes are learned for each

language with a vocabulary limitation of 60,000. Codes are applied to their respective language

corpora. Next, word embeddings extracted for each language using fastText12 are aligned us-

ing Conneau et al. (2017)’s method. Aligned embeddings are used in encoder blocks of both

languages.

9http://www.cfilt.iitb.ac.in/iitb parallel/
10https://ltrc.iiit.ac.in/download.php
11https://meta.wikimedia.org/wiki/Data dumps
12https://github.com/facebookresearch/fastText
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Encoder

Encoder

Decoder

Decoder

1

4 

Language 1 

Language 2 

1,3 Language Modelling 

2,4 Learning Translation

Noise model 
(Drop, Swap words

randomly) 
I am a student student a I

Denoising
Auto Encoder

I am a student

Trainable Trainable

I am a student Encoder Decoder
2 

je suis étudiant I am a student

Prediction Mode. Error is not
backpropagated.

Training Mode. Parameters
are updated.

Step 1. Denoising Auto Encoder

Step 2. Back Translation

Figure 3.11: Representation of Unsupervised NMT training for Language 1. For Language 2,
process is the same.

Training procedure for Language 1 in Unsupervised NMT is shown in Figure 3.11. For Lan-

guage 2, it is same as Language 1. In case of training Language 1, Step 1 includes a noisy

model, which randomly swaps, drops the words of an input sentence, which is then recon-

structed using DAE (the encoder-decoder blocks) of Language 1. This helps the decoder to

denoise any noisy translated sentence. In step 2, input sentence goes through Source→Target

(Language 1→Language 2) NMT model to generate a noisy sentence in Language 2. Translated

sentence, then goes through Target→Source (Language 2→Language 1) NMT model. For

Language 2, it is vice-versa. Configuration for Unsupervised NMT is mentioned in Table 3.2.

Attribute Value

Embedding Dim 300
Embedding Algo SkipGram
# Encoder layers 4
# Decoder layers 4
# Shared layers 3

Table 3.2: Configuration for Unsupervised NMT

3.2.4 Introducing Semi-supervised signal

An analysis on current State-of-the-Art Unsupervised MT by Søgaard et al. (2018) show that

Unsupervised MT performs worse on agglutinative languages and introducing weak supervision

signals in Bilingual dictionary induction can alleviate the system. Along the same line of work,
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we intend to 1. fine-tune Unsupervised NMT system with parallel data 2. Training encoder-

decoder pairs with parallel data and then starting Unsupervised NMT system with trained

encoder-decoder pairs. We use cyclic learning rates (Smith, 2015) i.e to increase the learning

rate from time to time. The reason behind it is to jump over the local minima using high

learning rates and settle down using low learning rates. This is performed for every epoch.

3.2.5 ELMo

In the initial stages of Unsupervised NMT, synthetically generated sentences in Step 2 (Figure

3.11) are usually poor since we are taking predictions from an untrained NMT model. So,

initialization is imperative, otherwise poorly generated sentences are used to train another

NMT model, which will turn out to learn nothing.

Word embeddings are static, i.e, they are used as look-up tables for words despite their sense and

context. Peters et al. (2018) proposed using internal representations of Bidirectional Langauge

Model as dynamic word representations. This will help the model to learn the sense in which

words are used. Although, Self-Attention also looks at the whole context, in the initial stages

its parameters are not trained to infer meaningful information from the context. So, ELMo

(Embeddings from Language Model) are useful here.

For a 2 level Bidirectional Language Model, we get 3 vector representations (word encoder layer,

LSTM layer 1, LSTM layer 2). One can either average or learn a weighted distribution of these

vectors to get a single representation for a word. Including this representation in the encoding

component of each language’s Transformer architecture may result in having a better model

initialization.

3.2.6 Chunking

Chunking can take care of fertility, to an extent. It also helps in preserving the noun phrases

together. We train a Neural Chunker using Bidirectional LSTM-CRF13 for both the languages

13https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
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on their respective Dependency Tree banks14. Deviating from the standard chunking dataset

formats, we create a simple chunking dataset by mentioning whether the current word is in the

start, middle or end of a chunk without having to predict the chunk type. If the word is not a

part of any chunk, we label it as end of a chunk.

After labeling the monolingual corpora, top 60,000 chunks are extracted using PMI (Point Wise

Mutual Information)15 metric. In spite of filtering the chunks through PMI metric, there is no

assurance that we have related chunks in both languages because the domains from which the

corpora have been extracted can be different. For this reason, we learn distributed representa-

tions of the corpora and keep the chunks that have considerable alignment scores.

Firstly, BPE is applied to corpora, while not breaking the chunks. After aligning the distributed

representations of both languages, 5 nearest neighbors along with their cosine similarity scores

for each chunk are stored. Chunks are sorted based on the sum of their alignment scores with

neighbors.

Raw corpus Chunker Chunked corpus

PMI

Corpus with only 60k
filtered chunks. Other
chunks are dissolved

into words.

Chunks and their
alignment scores with

other neighbors

BPE, Learn
embeddings and

align them

Corpus with only 60k
filtered chunks. Other
chunks are dissolved

into words.

 Filter top 30k chunks
based on the alignment
scores with 5 nearest

neighbors

30k chunks

Chunks and their
alignment scores with

other neighbors
30k chunks

Dissolve all chunks
except 30k and BPE Desired corpus 

Lang 2 

Lang 1 

Figure 3.12: Chunking procedure.

14http://ltrc.iiit.ac.in/treebank H2014/
15https://en.wikipedia.org/wiki/Pointwise mutual information
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Attribute Value

Chunking Approach BiLSTM-CRF
Embedding Algo SkipGram
#Chunks considered 30000
Filter 1 PMI
Filter 2 Alignment scores

Table 3.3: Configuration for Chunking

3.2.7 How good are Cross-Lingual word embeddings and DAE

Back-Translation(2.3), backbone of Unsupervised Machine Translation, insists that we use syn-

thetic sentences from opposite NMT system ( i.e Target lang→Source lang NMT system for

Source→Target and vice versa). We conjecture that synthetic sentences from untrained NMT

system, in the initial phases, would lead to delay in the convergence of the model. In order to

check our conjecture, we propose to train Language Models completely, before Back-Translation

and do a naive word-word translation based on the nearest target token in cross-lingual space,

followed by passing them through trained DAE, which is now, capable of de-noising the naively

translated sentence. De-noised translated sentence is used as synthetic sentence instead of the

one from opposite NMT system. We do this for few epochs and then switch to NMT based

synthetic sentence generation.

Our experiment (4.5) on evaluating the translations based solely on the cross-lingual word

embeddings and trained DAE(2.3), buttress our hypothesis on skipping NMT based generation

in initial phases.



Chapter 4

Results and Discussion

4.1 Alignment

Having learned the Transformation Matrix W, Table 4.1 & Table 4.2 show an example of the

aligned distributions. Each entry in the table consists of nearest neighbor of the query word

followed by cosine-similarity of the query word with its neighbor.

Source Language Target Language

acCA-1.0000 aCa-0.79
baDiyA-0.66 EYmxH-0.57
baDZiyA-0.66 aCE-0.57
acCe-0.63 aCI-0.56
burA-0.60 bHwrIn-0.53

Table 4.1: Nearest neighbor search for the word acCA(Good) in Hindi(Src) & Urdu (Tgt)
languages using cosine-similarity

Source Language Target Language

acCA-1.0000 good-0.69
baDiyA-0.66 excellent-0.59
baDZiyA-0.66 terrific-0.58
acCe-0.63 fantastic-0.56
burA-0.60 great-0.54

Table 4.2: Nearest neighbor search for the word acCA(Good) in Hindi(Src) & English (Tgt)
languages using cosine-similarity

21
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4.2 Baseline

Results for Transfomer based NMT, trained on parallel data are reported in Table 4.3.

Src→Tgt # Train # Val # Test # BLEU

Hi→Ur 37000 3000 7000 55.54
Ur→Hi 37000 3000 7000 48.04
Hi→Ur 7000 3000 37000 42.03
Ur→Hi 7000 3000 37000 33.78
Hi→Ur 1000 3000 47000 6.31
Ur→Hi 1000 3000 47000 4.54

Table 4.3: Hi-Ur Baseline results

Src→Tgt # Train # Val # Test # BLEU

En→Hi 40000 5000 5000 11.71
Hi→En 40000 5000 5000 13.49
En→Hi 5000 5000 40000 1.99
Hi→En 5000 5000 40000 2.96
En→Hi 1000 5000 44000 0.81
Hi→En 1000 5000 44000 0.67

Table 4.4: En-Hi Baseline results

4.3 Unsupervised NMT

We firstly investigate how Unsupervised NMT performs on the language pairs and how the

number of sharing layers are affecting it. We also make minor modifications like shifting from

greedy decoding to beam search in inference mode. Lample et al. (2018) use greedy search

for synthetic sentence generation step in back translation (2.3) for the error to backpropagate

(Edunov et al., 2018), which holds true to its purpose in the system, but not in inference mode.

Table 4.7 shows an increase in BLEU score by 2 - 3 points, when BEAM search is used.

Table 4.5 reports the model’s best performance and performance after 1st epoch. It shows that

model with shared layers converges faster than the one with no shared layers.

Secondly, we investigate whether an existing Unsupervised NMT system can be fine-tuned with

parallel data to get better at translating. We vary the training size of parallel data, while
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Src→Tgt # Epochs BLEU(Val) # Shared layers

Hi→Ur 1 0.16 0
Hi→Ur 1 15.96 3
Ur→Hi 1 0.15 0
Ur→Hi 1 17.81 3
Hi→Ur 49 31.56 0
Hi→Ur 17 30.37 3
Ur→Hi 49 27.39 0
Ur→Hi 17 28.65 3

Table 4.5: Unsupervised NMT Hi-Ur results with and w/o shared layers

Src→Tgt # Epochs BLEU(Val) # Shared layers

En→Hi 1 0.24 0
En→Hi 1 1.8 3
Hi→En 1 0.00 0
Hi→En 1 1.43 3
En→Hi 26 2.37 0
En→Hi 12 4.47 3
Hi→En 26 1.59 0
Hi→En 12 2.58 3

Table 4.6: Unsupervised NMT En-Hi results with and w/o shared layers

Src→Tgt Decoding # Val # Test BLEU

Hi→Ur Greedy 3000 47000 26.02
Ur→Hi Greedy 3000 47000 25.11
Hi→Ur BEAM 3000 47000 30.81
Ur→Hi BEAM 3000 47000 28.06

Table 4.7: Unsupervised NMT results with 3 shared layers

fine-tuning, to see if it performs better than supervised NMT systems. Cyclic Learning Rates

(CLR) are used in the following manner ( Table 4.8 ). An epoch has 0.5 M iterations through

instances. Each entry indicates learning rate at each one-third of epoch size. Learning rate

gradually decreases by the difference between their interval.

Epoch size 0 n/3 2n/3 n

Mono (Auto-Encoder) 1 0.5 0.1 0
Para 1 0.5 0.1 0

Table 4.8: Cyclic Learning Rates.

Sentences generated in complete Unsupervised setting tend to be hugely influenced by their

language models and domain differences. For example, Bal Gangadhar Tilak translates to John
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Src→Tgt # Train # Val # Test BLEU

Hi→Ur 500 3000 44500 37.09
Ur→Hi 500 3000 44500 32.31
Hi→Ur 1000 3000 43000 39.17
Ur→Hi 1000 3000 43000 34.55
Hi→Ur 7000 3000 37000 47
Ur→Hi 7000 3000 37000 43
Hi→Ur 37000 3000 7000 55.62
Ur→Hi 37000 3000 7000 48.82

Table 4.9: Unsupervised Hi-Ur NMT results when fine-tuned on parallel data

Src→Tgt # Train # Val # Test BLEU

En→Hi 500 5000 44500 4.38
Hi→En 500 5000 44500 4.16
En→Hi 1000 5000 44000 5.64
Hi→En 1000 5000 44000 5.5
En→Hi 5000 5000 40000 8.4
Hi→En 5000 5000 40000 10.05
En→Hi 40000 5000 5000 13.71
Hi→En 40000 5000 5000 15.29

Table 4.10: Unsupervised En-Hi NMT results when fine-tuned on parallel data

F.Kennedy and Diwali translates to Christmas. But with fine-tuning, even with lesser training

data, translations have improved.

4.4 ELMo

We tested how ELMo affects the performance of supervised NMT system. We trained NMT

Transformer on En-De language pair, where we supply pretrained ELMo representations1.

Table 4.11 shows that ELMo helps in improving translation to certain extent. This motivated

us to extend it to Unsupervised NMT.

ELMo # Train # Val # Test BLEU

Not included 10000 3000 2737 0.00
Included 10000 3000 2737 0.10

Table 4.11: ELMo on supervised NMT system

1https://github.com/HIT-SCIR/ELMoForManyLangs
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Figure 4.1: Comparison of Hi→Ur Unsupervised NMT performance w & w/o ELMo.
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Figure 4.2: Comparison of Ur→Hi Unsupervised NMT performance w & w/o ELMo.

We train language models for Hindi and Urdu in their BPE format for attaining ELMo (

Embeddings from Language Models).

Language Perplexity

Urdu 51
Hindi 120

Table 4.12: ELMo language models
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4.5 Chunking

Table 4.13 shows the alignment of chunks, with a chunk and its best aligned chunk in other

language. From Table 4.13, it can be observed that, alignment does a good job in preserving

semantic information and aligning related terms together. However, domain differences like

Delhi, Lahore often hinder the objective, Chunking want to achieve.

Query chunk (Hindi) Aligned chunk (Urdu)

xillI ucca nyAyAlaya ne ( Delhi High Court) laHvr HaIYI kvrt nE (Lahore High Court)

xiyA jA sakawA hE (Can be given) xIa ja skwa HE (Can be given)

inala meM (In the finals) sImI PYaIYnl mIz (In the Semi finals)

Table 4.13: Alignment of chunks

With the increased vocabulary and domain differences, including chunks in Unsupervised NMT

setup doesn’t seem to be a good idea. Table 4.14 shows that Unsupervised NMT with chunks

perform badly.

Src→Tgt BLEU

Hi→Ur 17
Ur→Hi 20

Table 4.14: Hi-Ur Chunked Unsupervised NMT models

4.6 Modified Back-Translation

As said in section 3.2.7, dictionary is induced based on the alignment scores and DAE (2.3)

is trained in prior. Now, in the synthetic sentence generation step of Back-Translation, naive

word-word translation is done based on the induced dictionary for first few epochs.

In Figures 4.3,4.4,4.5 and 4.6, for epoch 1, we just train DAE and evaluate the translations

to see how well the model performs independent of Back-Translation and for epoch 2, we take

translations based on word-word substitution and perform Back-Translation. From epoch 3,

NMT based generations are used in Back-Translation.
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Figure 4.3: Comparison of Hi→Ur Unsupervised NMT performance w & w/o modified back
translation.
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Figure 4.4: Comparison of Ur→Hi Unsupervised NMT performance w & w/o modified back
translation.

Dictionary based generation helps the NMT models to converge fast with a relatively better

score for both language pairs Hi-Ur & En-Hi.
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Figure 4.5: Comparision of En→Hi Unsupervised NMT performance w & w/o modified back
translation.
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Figure 4.6: Comparison of Hi→En Unsupervised NMT performance w & w/o modified back
translation.
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Conclusions and Future Work

Conclusion

We analyzed the effect of fine-tuning on Unsupervised NMT models and showed that a minimal

amount of 1000 parallel sentences can boost the performance for dissimilar languages. BEAM

search is beneficial in both testing and Back-Translation step of training, but advisable to use it

only during inference mode, since it increases the training time. Including ELMo representations

improved the model but it involves more time to train. Models trained using our Modified Back-

Translation converge faster with a better performance than the models with ELMo and baseline

Unsupervised NMT setting.

Future Work

Language models impact the Neural Machine Translation system a lot. It is the same thing

that is restricting models to look in a diverse domain. Generative models could help in reducing

the impact of Language models on generation. Copy networks can help the models to transfer

named entities. Noise in DAE can be made specific to a language pair, which helps the decoder

generate syntactically correct sentences.

29
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